

SMT Quality Monitoring

Harald Fox, Northwestern University D0 Workshop Beaune 2003

Run Quality DB

- Input for run quality decision:
 - Downtime periods and missing crates (becomes useless).
 - Shifter rating (bad ratings are cross checked).
 - Problems reported in the log book.
- The rating is following Tom's and Stefan's scheme:
 - Runs with unrecoverable data are marked as "useless".
 - Runs with somewhat higher inefficiency that is measurable are marked as "compromised".
 - All other runs are "good".
- Technical side:
 - Input: list of physics runs (not all of the special runs are rated, as SMT is typically off).
 - The start run/end run times are compared to the times where a problem was identified.
 - All runs during this time period get the lowest rating available.

Bad Runs

- What makes a run bad?
 - Missing crates.
 - Large scale HV problems.
- What compromises data quality?
 - Missing VRBs.
 - Some persistent HV problems that affect a number of HDIs.
 - Threshold screw ups that affect many HDIs.
- What does not degrade run quality?
 - Reduced HV on a few HDIs.
 - Disabled HDIs.

Recocert SMT

- Phi distributions of SMT clusters (global and per barrel and layer).
- Number of hits per track (for Barrel, F-disks, H-disks).

- Planned: efficiency calculation, global and for each HDI.
- Other variables?

Tracks in Recocert

- Reconstructed isolated muons with $p_T > 2.5 GeV$ are used to determine the tracking efficiency.
- The efficiency is plotted against various parameters:

 - P_T
 - Charge
 - Tick number
 - Track multiplicity

Tracks in Recocert

Monitored track quantities:

- Number of Tracks per event
- x² probability
- P_T distribution
- Φ distribution
- tan A
- z distribution
- DCA distributions

Tracks in Recocert

- Basic underlyingSMT/CFT quantities:
 - Number of CFT hits
 - Number of SMT hits
 - Barrels
 - Disks
 - F-Disks
 - H-Disks

Conclusion

- There is a lot of monitoring in the online sector. This is where the main emphasis should be. Corrupted/missing data cannot be recovered.
- Online information finds its way into the run quality database. Could use some improvement: Should be standardized by the detector groups. CFT has a good start with the new run quality package. Is this the way to go?
- Feedback from offline would be helpful. It would be useful for detector people to know what the impact of their work on data quality is beyond the simple on/off. Especially track quantities that are sensitive to SMT quality / secondary vertexing would be useful. Recocert is a step in the right direction.
- It is planned to run Recocert over 20k 30k events once per shift. This would allow for efficiency plots vs time.